Colles de Maths - semaine 9 - MP*2 Lycée du Parc

Julien Allasia - ENS de Lyon

Théorèmes d'interversion

Exercice 1 Déterminer $\lim_{n\to\infty} \int_0^{\sqrt{n}} \frac{\mathrm{d}t}{\left(1+\frac{t^2}{n}\right)^n}$.

Exercice 2 Soit f continue sur \mathbb{R}_+ et a > 0. Déterminer $\lim_{a \to 0^+} \int_0^a \frac{f(t)}{\sqrt{t(a-t)}} dt$.

Exercise 3 Montrer que $\int_0^\infty \frac{x}{\operatorname{ch} x} \, \mathrm{d} x = \sum_{n=0}^\infty \frac{2 \, (-1)^n}{(2n+1)^2}.$

Exercice 4 Soit $\alpha > 0$. Montrer que

$$\int_0^1 \frac{\mathrm{d}t}{1+t^\alpha} = \sum_{n=0}^\infty \frac{(-1)^n}{n\,\alpha+1}.$$

En déduire une expression de ln 2 sous forme de série.

Exercice 5 Donner un développement asymptotique à deux termes quand n tend vers l'infini de

$$\int_0^\infty \frac{1}{1+t+t^n} \, \mathrm{d}t.$$

Exercice 6 Soit T > 0 et $f : [0, T] \to \mathbb{C}$ continue.

- 1. Déterminer la limite simple de la suite $g_n: t \in [0,T] \mapsto \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \int_0^T f(u) e^{-kn(t-u)} du$.
- 2. On suppose que $\left(\int_0^T f(t)\,e^{nt}\,\mathrm{d}t\right)_{n\in\mathbb{N}}$ est bornée. Montrer que f=0.

Convergence simple et convergence uniforme

Exercice 7 Etudier la convergence simple, uniforme et normale de la série de fonctions

$$f_n(x) = (-1)^n \sin^{\circ n}(x)$$

pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$ (o n signifie composée n fois).

Exercice 8 Montrer que tout fermé de \mathbb{R} est l'ensemble des zéros d'une fonction C^{∞} de \mathbb{R} dans \mathbb{R} .

Approximation uniforme

Exercice 9 Soit $(P_n)_{n\in\mathbb{N}}$ une suite de fonctions polynômiales qui converge uniformément vers f sur \mathbb{R} . Que dire de f?

Exercice 10 Soit $d \in \mathbb{N}$ et $(P_n)_{n \in \mathbb{N}}$ une suite de fonctions polynomiales de degré au plus d, qui converge simplement sur \mathbb{R} . Montrer que la limite est une fonction polynomiale de degré au plus d, et que la convergence est uniforme sur tout compact de \mathbb{R} .